Math, asked by prerana232, 2 months ago

Sc. (Calculus of Several Variables) (S-III)
4.107
Multiple Integrals
2.
1 оу
9. The integral S S ſ dz dy dx =
0 -1 0
2
1 1-X 1-Z
1-x
1
1-2
(a) S S S dx dy dz
(b)
V1-z
S sh dy dz
0-V1-
-1 0 o
2.
Х
-V1-z x²
dx
1 1
1.-V2
گو
sss dy dx dz
1 1 1 -√2
(d) ſ I ſ dz dx dy
0 0 - 1
0 0 - 1​

Answers

Answered by gaurangi4659
0

Answer:

Problem 1 (16.1.15). Use symmetry to evaluate Z Z

R

x

3

dA for R = [−4, 4] × [0, 5].

Solution. For each y, the x-integral goes from −4 to 4, so is symmetric about the x-axis, while the

function x

3

is odd, meaning that (−x)

3 = −x

3

. This means that the negative and positive portions

of the integral cancel, so each x-integral is 0, hence the entire area integral is 0.

Problem 2 (16.1.17). Use symmetry to evaluate Z Z

R

sin x dA for R = [0, 2π] × [0, 2π].

Solution. For each y, the x-integral is the integral of sin x over a whole period, so is 0. Thus the

entire area integral is 0.

Problem 3 (16.1.24). Evaluate Z 1

−1

Z π

0

x

2

sin y dx dy.

Solution.

Z y=1

y=−1

Z x=π

x=0

x

2

sin y dx dy =

Z y=1

y=−1

x

3

3

sin y

x=π

x=0

dy

=

Z y=1

y=−1

π

3

3

sin y dy

=

π

3

3

[− cos y]

y=1

y=−1

=

π

3

3

(cos(−1) − cos 1)

= 0.

Problem 4 (16.1.31). Evaluate Z 2

1

Z 4

0

dy dx

x + y

.

Solution.

Z x=2

x=1

Z y=4

y=0

dy dx

x + y

=

Z x=2

x=1

[ln(x + y)]y=4

y=0 dx

=

Z x=2

x=1

(ln(x + 4) − ln(x)) dx

= [(x + 4) ln(x + 4) − (x + 4)]x=2

x=1 − [x ln x − x]

x=2

x=1

= [(6 ln 6 − 6) − (5 ln 5 − 5)] − [(2 ln 2 − 2) − (1 ln 1 − 1)]

= 6 ln 6 − 5 ln 5 − 2 ln 2.

3

Similar questions