secθ(1+sinθ/cosθ+cosθ/1+sinθ)-2tan²θ
Answers
Solution−
Given expression is
We know,
So using this identity, we get
We know that,
So, using this, we have
We know,
- So, using this, we have
Hence,
The value of
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Answer:
Solution−
Given expression is
\rm :\longmapsto\:sec\theta \bigg( \dfrac{1 + sin\theta }{cos\theta } + \dfrac{cos\theta }{1 + sin\theta } \bigg) - 2 \: {tan}^{2} \theta:⟼secθ(
cosθ
1+sinθ
+
1+sinθ
cosθ
)−2tan
2
θ
\rm \: = \: \:sec\theta \bigg(\dfrac{ {(1 + sin\theta )}^{2} + {cos}^{2}\theta }{cos\theta (1 + sin\theta )} \bigg) - 2 {tan}^{2}\theta=secθ(
cosθ(1+sinθ)
(1+sinθ)
2
+cos
2
θ
)−2tan
2
θ
We know,
\boxed{ \bf{ \: {(x + y)}^{2} = {x}^{2} + {y}^{2} + 2xy}}
(x+y)
2
=x
2
+y
2
+2xy
So using this identity, we get
\rm \: = \: \:sec\theta \bigg(\dfrac{1 + {sin}^{2} \theta + 2sin\theta + {cos}^{2}\theta }{cos\theta (1 + sin\theta )} \bigg) - 2 {tan}^{2}\theta=secθ(
cosθ(1+sinθ)
1+sin
2
θ+2sinθ+cos
2
θ
)−2tan
2
θ
\rm \: = \: \:sec\theta \bigg(\dfrac{1 + {sin}^{2} \theta + {cos}^{2}\theta + 2sin\theta }{cos\theta (1 + sin\theta )} \bigg) - 2 {tan}^{2}\theta=secθ(
cosθ(1+sinθ)
1+sin
2
θ+cos
2
θ+2sinθ
)−2tan
2
θ
We know that,
\boxed{ \bf{ \: {sin}^{2}x + {cos}^{2}x = 1}}
sin
2
x+cos
2
x=1
So, using this, we have
\rm \: = \: \:sec\theta \bigg(\dfrac{1 + 1 + 2sin\theta }{cos\theta (1 + sin\theta )} \bigg) - 2 {tan}^{2}\theta=secθ(
cosθ(1+sinθ)
1+1+2sinθ
)−2tan
2
θ
\rm \: = \: \:sec\theta \bigg(\dfrac{2 + 2sin\theta }{cos\theta (1 + sin\theta )} \bigg) - 2 {tan}^{2}\theta=secθ(
cosθ(1+sinθ)
2+2sinθ
)−2tan
2
θ
\rm \: = \: \:sec\theta \bigg(\dfrac{2 }{cos\theta } \bigg) - 2 {tan}^{2}\theta=secθ(
cosθ
2
)−2tan
2
θ
\rm \: = \: \:sec\theta (2sec\theta ) - 2 {tan}^{2} \theta=secθ(2secθ)−2tan
2
θ
\rm \: = \: \: {2sec}^{2}\theta - {2tan}^{2} \theta=2sec
2
θ−2tan
2
θ
\rm \: = \: \:2( {sec}^{2}\theta - {tan}^{2} \theta )=2(sec
2
θ−tan
2
θ)
We know,
\boxed{ \bf{ \: {sec}^{2} x - {tan}^{2} x = 1}}
sec
2
x−tan
2
x=1
So, using this, we have
\rm \: = \: \:2 \times 1=2×1
\rm \: = \: \:2=2
Hence,
The value of
\boxed{ \bf{ \: \:sec\theta \bigg( \dfrac{1 + sin\theta }{cos\theta } + \dfrac{cos\theta }{1 + sin\theta } \bigg) - 2 \: {tan}^{2} \theta \: = \: 2}}
secθ(
cosθ
1+sinθ
+
1+sinθ
cosθ
)−2tan
2
θ=2
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━