Math, asked by archanaaw999, 11 months ago

sec
(1-sin
)(sec 0 + tan 6)=1.​

Answers

Answered by Anonymous
2

To Prove

\mathsf{secA(1 - sinA)(secA + tanA) = 1}

Solution

\mathsf{\implies\:secA(1 - sinA)(secA + tanA) = 1}

\mathsf{\implies\:\frac{1}{cosA}(1 - sinA)(\frac{1}{cosA} + \frac{sinA}{cosA})}

\mathsf{\implies\:(\frac{1}{cosA} - \frac{sinA}{cosA})(\frac{1}{cosA} + \frac{sinA}{cosA})}

\fbox{\mathsf{\red{Using\:identity:\: (a-b) (a+b) = a^2 - b^2}}}

\mathsf{\implies\:(\frac{1}{cosA})^2 - (\frac{sinA}{cosA})^2 }

\mathsf{\implies\:\frac{1}{cos^2A} - \frac{sin^2A}{cos^2A} }

Taking LCM

\mathsf{\implies\:\frac{1 - sin^2A}{cos^2A} }

\mathsf{\implies\:\frac{\cancel{cos^2A}}{\cancel{cos^2A}} }

\mathsf{\implies\: 1}

Hence Proved

━━━━━━━━━━━━━━━━━━━━━━━━

Trigonometric Identity used

  • SecA = 1/ CosA
  • tanA = SinA/ CosA
  • Sin²A + Cos²A = 1

\mathsf{\rightarrow}1 - Sin²A = Cos²A

Answered by Cosmique
0

The question posted seems meaningless post it correctly

Similar questions