Math, asked by immayank8969, 9 months ago

SecΘ(1-sinΘ)(secΘ+tanΘ)=1

Answers

Answered by SwaggerGabru
0

\huge\underline{\overline{\mid{\bold{\red{ANSWER-}}\mid}}}

1- sinθ(secθ - tanθ) = 1 - sinθ (secθ) + 1 -sinθ ( tanθ)

=secθ - secθ.sinθ + tanθ - tanθ.sinθ

=secθ- tanθ + tanθ - (sin(sqr)θ / cosθ)

= secθ - (sin(sqr)θ / cosθ)

= ( 1/ cosθ)- (sin(sqr)θ/cosθ)

= ( 1 - sin(sqr)θ/ cosθ) [ LCM cosθ]

= ( cos(sqr)θ / cosθ) [ 1 - sin(sqr)θ = cos(sqr)θ]

= cosθ

Answered by pulakmath007
19

\displaystyle\huge\red{\underline{\underline{Solution}}}

 \blacksquare \: FORMULA TO BE IMPLEMENTED

  •   \displaystyle \: {sin}^{2} Θ +   {cos}^{2} Θ = 1

  •  \displaystyle \:  {sec} Θ =  \frac{1}{cos Θ}
  •  \displaystyle \:  {tan} Θ =  \frac{ sin Θ}{ {cos} Θ}

 \blacksquare \: CALCULATION

SecΘ(1-sinΘ)(secΘ+tanΘ)

 =  \displaystyle \: SecΘ(1-sinΘ)( \frac{1}{ \cosΘ}  +  \frac{sinΘ}{cosΘ} )

 =  \displaystyle \: SecΘ(1-sinΘ)( \frac{1 + sinΘ}{cosΘ})

 =  \displaystyle \:  \frac{1}{cosΘ} (1-sinΘ)( \frac{1 + sinΘ}{cosΘ})

 =  \displaystyle \:  \frac{1}{ {cos}^{2} Θ} (1-sinΘ)({1 + sinΘ})

 =  \displaystyle \:  \frac{1}{ {cos}^{2} Θ} (1- {sin}^{2} Θ)

 =    \displaystyle \:  \frac{1}{ {cos}^{2} Θ}  \times  {cos}^{2} Θ

 = 1

Similar questions