Math, asked by Mubashshira9781, 9 months ago

Sec 15×cosec75 -cot 75 ×tan 15

Answers

Answered by Anonymous
10

{ \tt{ \large { \purple{Solution}}}}

{ \rm{ \sec(15)  \times  \csc(75)  -  \cot(75)  \times  \tan(15) }}

{ \rm { =   \sec( {90}^{ \degree} -  {75}^{ \degree} )  \times  \csc( {75}^{ \degree} )  -  \cot(  {75}^{ \degree} ) \times  \tan( {90}^{ \degree}  -  {15}^{ \degree} ) }}

{ \rm{  =   \csc(75)  \times  \csc(75)  -  \cot(75)  \times  \cot(75) }}

{ \rm{  =  { \csc}^{2}  {75}^{ \degree} -  { \cot }^{2}  {75}^{ \degree}  }}

{ \rm{ = 1}}

──────────────────────────

{  \tt{ \large{ \blue{more \: related \: formulas}}}}

{ \rm{(i) { \sin }^{2} a +  { \cos}^{2} a = 1}}

{ \rm{(ii) {  \sec  }^{2} a  -   { \tan }^{2} a = 1}}

{ \rm{(iii) {   \csc }^{2} a  -   {  \cot}^{2} a = 1}}

{ \rm{ \sin =  \frac{p}{h} }}

{ \rm{ \cos =  \frac{b}{h} }}

{ \rm{ \tan =  \frac{h}{b} }}

{ \rm{   \sec   =  \frac{p}{b} }}

{ \rm{    \cot   =  \frac{b}{h} }}

{ \rm{h = height}}

{ \rm{ b=  base}}

{ \rm{p = perpendicular}}

Similar questions