Math, asked by bhaveshdixit8810, 10 months ago

Sec^2(105+alpha)-tan^2(75-alpha) solve mathematicaly

Answers

Answered by rishu6845
12

Answer:

\boxed{ \huge \pink{1}}

Step-by-step explanation:

 \bold{\underline{ \red{to \: find}}} \longrightarrow \\ value \: of \\  {sec}^{2} (105 +  \alpha ) -  {tan}^{2} (75 -  \alpha )

 \bold{ \underline{ \green{concept \: used}}} \longrightarrow \\  \boxed{ \pink{ \large{sec(180 -  \theta ) =  - sec \theta}}} \\  \boxed{ \blue{ \large{ {sec}^{2}  \theta -  {tan}^{2}  \theta = 1}}}

 \bold{ \underline{ \orange{solution}}} \longrightarrow \\  {sec}^{2} (105 +  \alpha ) -  {tan}^{2} (75 -  \alpha ) \\  =  {sec}^{2} (180 - 75 +  \alpha ) -  {tan}^{2} (75 -  \alpha ) \\  =  {sec}^{2} (180 - (75 -  \alpha )) -  {tan}^{2} (75 -  \alpha ) \\  =  ({ sec(180 - (75 -  \alpha ))}^{2}  -  {tan}^{2} (75 -  \alpha ) \\  = ( - sec(75 -  \alpha )) ^{2}  -  {tan}^{2} (75 -  \alpha ) \\  =  {sec}^{2} (75 -  \alpha ) -  {tan}^{2} (75 -  \alpha ) \\ = 1

Similar questions