sec^2(25+∅)-Co sec^2(65-∅)+(Cos^240°+co sec^238°) / (sin^250°+sec^252°) + (sec 57°.sin 64°) / ( co sec 33°.cos 26°)
Answers
Answer:
- cos2 A) cosec2 A = 1
Solution:
(1 - cos2 A)cosec2 A
= Sin2 A cosec2 A
= (Sin A cosec A)2
= (Sin A × (1/Sin A))2
= (1)2
= 1
Question: 2
(1 + Cot2 A) Sin2 A = 1
Solution:
We know,
cosec2A - Cot 2 A = 1
So, (1 + Cot2 A) Sin2 A
= Cosec2 A Sin2 A
= (Cosec A Sin A)2
= ((1/Sin A) × Sin A)2
= (1)2
= 1
Question: 3
tan2θ cos2θ = 1 − cos2θ
Solution:
We know,
sin2 θ + cos2 θ = 1
So, tan2 θ cos2 θ
= (tan θ × cos θ)2
= (sin θ)2 sin2θ 1 - cos2θ
Question: 4
Solution:
We know,
sin2 θ + cos2 θ = 1
= 1
Question: 5
(sec2θ − 1)(cosec2θ − 1) = 1
Solution:
We know that, (sec2θ − tan2θ) = 1 (cosec2θ − cot2θ) = 1
So, (sec2θ - 1)(cosec2θ - 1)
= tan2θ × cot2θ
= (tan θ × cot θ)2
= 12
= 1
Question: 6
Solution:
We know that, (sec2θ − tan2θ) = 1
So,
Question: 7
Solution:
We know, sin2θ + cos2θ = 1
So, Multiplying both numerator and denominator by (1+ sin θ), we have