Math, asked by me6823, 5 months ago

(sec^2 theta-1)(1-cosec^2 theta)

Answers

Answered by EthicalElite
8

Question :

 \sf \Big[sec^{2} \theta - 1\Big]\Big[1 - cosec^{2} \theta\Big]

⠀ ⠀⠀ ⠀ ⠀⠀ ⠀

Solution :

 \sf \Big[sec^{2} \theta - 1\Big]\Big[1 - cosec^{2} \theta\Big]

⠀ ⠀⠀ ⠀

We know that :

 \large \underline{\boxed{\bf{sec^{2} \theta - 1 = tan^{2} \theta }}}

 \sf : \implies \Big[tan^{2} \theta\Big]\Big[1 - cosec^{2} \theta\Big]

 \sf : \implies \Big[tan^{2} \theta\Big]\Big[- ( -1 + cosec^{2} \theta)\Big]

 \sf : \implies \Big[tan^{2} \theta\Big]\Big[- (cosec^{2} \theta - 1)\Big]

⠀ ⠀⠀ ⠀

We know that :

 \large \underline{\boxed{\bf{cosec^{2} \theta - 1 = cot^{2} \theta }}}

 \sf : \implies \Big[tan^{2} \theta\Big]\Big[- cot^{2} \theta\Big]

⠀ ⠀⠀ ⠀

We know that :

 \large \underline{\boxed{\bf{cot \theta = \dfrac{1}{tan \theta}}}}

 \sf : \implies \Big[tan^{2} \theta\Big] \Big[- \dfrac{1}{tan^{2} \theta}\Big]

 \sf : \implies \Big[\cancel{tan^{2} \theta}\Big] \Big[- \dfrac{1}{\cancel{tan^{2} \theta}} \Big]

 \sf : \implies - 1

⠀ ⠀⠀ ⠀

Hence,

 \sf \Big[sec^{2} \theta - 1\Big]\Big[1 - cosec^{2} \theta\Big] = - 1

⠀ ⠀⠀

Some Trigonometric identities :

  •  \sf sin^{2} \theta + cos^{2} \theta = 1
  •  \sf sec^{2} \theta - tan^{2} \theta = 1
  •  \sf cosec^{2} \theta - cot^{2} \theta = 1

Similar questions