Math, asked by mugdhadalvi2, 7 days ago

sec^2 theta - cos^2 theta = sin^2 theta (sec^2 theta +1)​

Answers

Answered by BrainlyPARCHO
2

\large { \fcolorbox{gray}{black}{ ✔\: \textbf{Verified \: answer}}}

Proved \:  that \sec^{2}\theta - \cos^{2}\theta = \sin^{2}\theta(\sec^{2}\theta + 1 ) \\  \\ Step-by-step  \: explanation: \\  \\ We  \: have \:  to \:  prove  \: that \\  \sec^{2}\theta - \cos^{2}\theta = \sin^{2}\theta(\sec^{2}\theta + 1 ) \\  \\ Now,  \: left  \: hand  \: side \\  \\ = \sec^{2}\theta - \cos^{2}\theta  \\ = 1 + \tan^{2}\theta + \sin^{2}\theta - 1 \\  \tiny \: {Since, \:  we  \: know  \: that  \: \sec^{2}\theta - \tan^{2}\theta = 1sec2θ−tan2θ=1 and \sin^{2}\theta + \cos^{2}\theta = 1 }\\ = \tan^{2}\theta + \sin^{2}\theta\\ = \frac{\sin^{2}\theta }{\cos^{2}\theta} + \sin^{2}\theta \\ = \sin^{2}\theta[\frac{1}{\cos^{2}\theta} + 1 ] \\ = \sin^{2}\theta(\sec^{2}\theta + 1 )\\ = right  \: hand \:  s ide. \\  \\ Hence, \:  it  \: proved.

Answered by user0888
7

\huge\text{\underline{\underline{Question}}}

Prove that -

\text{$\cdots\longrightarrow \sec^{2}\theta-\cos^{2}\theta=\sin^{2}\theta(\sec^{2}\theta+1).$}

\huge\text{\underline{\underline{Review}}}

\bold{Trigonometric\ identities}

\text{$\bullet\ \sin^{2}\theta+\cos^{2}\theta=1$}

\text{$\bullet\ \tan^{2}\theta+1=\sec^{2}\theta$}

\bold{Reciprocal\ trigonometric\ ratios}

\text{$\bullet\ \csc\theta=\dfrac{1}{\sin\theta}$}

\text{$\bullet\ \sec\theta=\dfrac{1}{\cos\theta}$}

\text{$\bullet\ \cot\theta=\dfrac{1}{\tan\theta}$}

\huge\text{\underline{\underline{Explanation}}}

L.H.S

\text{$=\sec^{2}\theta-\cos^{2}\theta$}

\text{$=\dfrac{1}{\cos^{2}\theta}-\cos^{2}\theta$}

\text{$=\dfrac{1-\cos^{4}\theta}{\cos^{2}\theta}$}

\text{$=\dfrac{(1-\cos^{2}\theta)(1+\cos\theta^{2})}{\cos^{2}\theta}$}

\text{$=\dfrac{\sin^{2}\theta(1+\cos\theta^{2})}{\cos^{2}\theta}\ \ \ \ \ \boxed{\because\sin^{2}\theta+\cos^{2}\theta=1}$}

\text{$=\sin^{2}\theta\times\dfrac{1+\cos\theta^{2}}{\cos^{2}\theta}$}

\text{$=\sin^{2}\theta\times\left(1+\dfrac{1}{\cos^{2}\theta}\right)$}

\text{$=\sin^{2}\theta\times\left(1+\sec^{2}\theta\right)\ \ \ \ \ \boxed{\because\sec\theta=\dfrac{1}{\cos\theta}}$}

\text{$=$} R.H.S

Hence it is proved that -

\text{$\cdots\longrightarrow\boxed{\sec^{2}\theta-\cos^{2}\theta=\sin^{2}\theta(\sec^{2}\theta+1).}$}

\huge\text{\underline{\underline{Helpful guide}}}

This question is related to trigonometric identities. It is better to write the equation in terms of \sin\theta and \cos\theta.

Let us find an example.

\text{$\cdots\longrightarrow \tan^{2}\theta+\sec^{2}\theta=2\tan^{2}\theta+1$}

L.H.S

\text{$=\tan^{2}\theta+\sec^{2}\theta$}

\text{$=\dfrac{\sin^{2}\theta}{\cos^{2}\theta}+\dfrac{1}{\cos^{2}\theta}$}

\text{$=\dfrac{\sin^{2}\theta}{\cos^{2}\theta}+\dfrac{1}{\cos^{2}\theta}$}

\text{$=\dfrac{\sin^{2}\theta}{\cos^{2}\theta}+\dfrac{\sin^{2}\theta+\cos^{2}\theta}{\cos^{2}\theta}\ \ \ \ \ \boxed{\because\sin^{2}\theta+\cos^{2}\theta=1}$}

\text{$=\dfrac{2\sin^{2}\theta+\cos^{2}\theta}{\cos^{2}\theta}$}

\text{$=\dfrac{2\sin^{2}\theta}{\cos^{2}\theta}+1$}

\text{$=2\tan^{2}\theta+1$\ \ \ \ \ \boxed{\because\tan\theta=\dfrac{\sin\theta}{\cos\theta}}}

\text{$=$} R.H.S

So, we write in terms of \sin\theta and \cos\theta to solve this problem.

Similar questions