Math, asked by brainrest, 2 months ago

sec
2
(x)cos
2
(2x) its intregation​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \int \sec^{2} (x)  \cos^{2} (2x)dx \\

  = \int \sec^{2} (x) (2 \cos^{2} (x)   - 1)^{2} dx \\

  = \int  \frac{ (2 \cos^{2} (x)   - 1)^{2}}{ \cos^{2} (x) } dx \\

  = \int  \frac{ 4\cos^{4} (x)    + 1 - 4 \cos^{2}(x)}{ \cos^{2} (x) } dx \\

  = \int  ( 4\cos^{2} (x)    +  \sec^{2} (x) - 4) dx \\

  = \int   4\cos^{2} (x) dx   +  \int \sec^{2} (x)dx -  \int4 dx \\

  =2 \int   2\cos^{2} (x) dx   +  \int \sec^{2} (x)dx -  \int4 dx \\

  =2 \int   (1 + \cos(2x) )dx   +  \int \sec^{2} (x)dx -  \int4 dx \\

  =2 \int  dx +2  \int\cos(2x) dx   +  \int \sec^{2} (x)dx -  \int4 dx \\

  =2x  + \sin(2x)  +  \tan (x) -  4x  + C\\

  \sin(2x)  +  \tan (x) -  2x  + C\\

Similar questions