Math, asked by anujagraj58, 7 months ago

sec 25 degree /cosec 65 degree + sin /49 degree / cos 41 degree​

Answers

Answered by Anonymous
1

GIVEN :-

TRIGNOMATRIC VALUES :

  •  \rm{ \dfrac{sec \: 25}{cosec \: 65} } \:  +  \dfrac{sin \: 49}{cos \: 41}

TO FIND :-

WE HAVE TO FIND THE VALUE OF

  • \rm{ \dfrac{sec \: 25}{cosec \: 65} } \:  +  \dfrac{sin \: 49}{cos \: 41}

SOLUTION : -

WE KNOW THAT

 \implies \boxed{\rm { sec \: a = cosec \: (90 - a)}}

hence ,

 \implies \: \rm{ sec \: 25 = cosec \: (90 - 25) \: }

\implies \: \rm{ sec \: 25 = cosec \: 65  -  -  -  \: eq \: 1 \: }

ALSO WE KNOW THAT ,

 \implies \boxed{\rm { sin \: a = cos \: (90 - a)}}

hence,

\implies \: \rm{ sec \: 25 = cosec \: (90 - 25) \: }

\implies \: \rm{ sin\: 49 = cos\:41 \: -  -  -  \: eq \: 2 }

NOW BUT EQUATION 1 AND EQUATION 2 IN

 \implies \: \rm{ \dfrac{sec \: 25}{cosec \: 65} } \:  +  \dfrac{sin \: 49}{cos \: 41}

 \implies \: \rm{ \dfrac{cosec \: 65}{cosec \: 65} } \:  +  \dfrac{cos \: 41}{cos \: 41}

\implies \: \rm{ 1+  1 = 2}

 \implies \boxed {\boxed {\: \rm{ \dfrac{sec \: 25}{cosec \: 65} } \:  +  \dfrac{sin \: 49}{cos \: 41 } = 2}}

OTHER INFORMATION :-

TRIGNOMETRIC IDENTITIES :-

  • SIN²∅ + COS²∅ = 1

  • SEC²∅ - TAN²∅ = 1

  • COSEC²∅ - COT²∅ = 1

TRIGNOMETRIC COMPLEMENTARY ANGLES :-

  • SIN 90 = COS ( 90 - ∅ )

  • COS 90 = SIN ( 90 - ∅ )

  • TAN 90 = COT ( 90 - ∅ )

  • COT 90 = TAN ( 90 - ∅ )

  • COSEC 90 = SEC ( 90 - ∅ )

  • SEC 90 = COSEC ( 90 - ∅ )

TRIGNOMATERIC RATIOS :-

  • SIN ∅ = 1/ COSEC ∅

  • COS ∅ = 1/ SEC ∅

  • TAN ∅ = 1/ COT ∅

  • TAN ∅ = SIN ∅ / COS ∅

  • COT ∅ = COS ∅ / SIN ∅

Similar questions