Math, asked by jktiglao01, 1 year ago

(Sec 30*)(Cos 30*) - (Tan 60*)(Cot 60*)

Answers

Answered by Anonymous
88
first of all, lemme tell u the values of sec and cos at 30° and tan and cot at 60°

sec 30° = 2/√3

cos 30° = √3/2

tan 60° = √3

cot 60° = √3/3

 \sf \therefore \: (\sec30 \degree)( \cos30 \degree) - ( \tan60 \degree) \\ \sf( \cot60 \degree) : - \\ \\ = \frac{ \cancel2}{ \cancel{\sqrt{3}} } \times \frac{ \cancel{ \sqrt{3}} }{ \cancel2} - ( \cancel{\sqrt{3} } \times \frac{1}{ \cancel{\sqrt{3}} } ) \\ \\ = 1 - 1 \\ \\ = 0
Answered by tanvigupta426
1

Answer:

The value of &\sec \left(30^{\circ}\right) \cos \left(30^{\circ}\right)-\tan \left(60^{\circ}\right) \cot \left(60^{\circ}\right) is equal to 0.

Step-by-step explanation:

Given:

&\left(\sec \left(30^{\circ}\right)\right)\left(\cos \left(30^{\circ}\right)\right)-\left(\tan \left(60^{\circ}\right)\right)\left(\cot \left(60^{\circ}\right)\right) \\

&=\sec \left(30^{\circ}\right) \cos \left(30^{\circ}\right)-\tan \left(60^{\circ}\right) \cot \left(60^{\circ}\right)

We have to find the value of

&\sec \left(30^{\circ}\right) \cos \left(30^{\circ}\right)-\tan \left(60^{\circ}\right) \cot \left(60^{\circ}\right)

Step 1

Express with sin, cos

&\sec \left(30^{\circ}\right)=\frac{1}{\cos \left(30^{\circ}\right)} \\

&=\frac{1}{\cos \left(30^{\circ}\right)} \cos \left(30^{\circ}\right)-\tan \left(60^{\circ}\right) \cot \left(60^{\circ}\right)

&\frac{1}{\cos \left(30^{\circ}\right)} \cos \left(30^{\circ}\right)=1 \\

&=1-\tan \left(60^{\circ}\right) \cot \left(60^{\circ}\right)

Step 2

Use the following trivial identity:

Since the zero solution exists as the "obvious" solution, hence it exists named a trivial solution.

Simplifying the values of the above equation, we get

$\tan \left(60^{\circ}\right)=\sqrt{3}$

$\cot \left(60^{\circ}\right)=\frac{\sqrt{3}}{3}$

=1-\sqrt{3} \frac{\sqrt{3}}{3}$$

$1-\sqrt{3} \frac{\sqrt{3}}{3}=0$

$=0$.

Therefore, the value of

&\sec \left(30^{\circ}\right) \cos \left(30^{\circ}\right)-\tan \left(60^{\circ}\right) \cot \left(60^{\circ}\right) is equal to 0.

#SPJ2

Similar questions