(sec^4 theta -sec^2 theta)=tan^2 theta+ tan^4 theta
Answers
Answered by
7
To prove ---> Sec⁴θ - Sec²θ = tan²θ + tan⁴θ
Proof ---> LHS = Sec⁴θ - Sec²θ
Taking Sec²θ common , we get
= Sec²θ ( Sec²θ - 1 )
We have an identity , Sec²θ - 1 = tan²θ , applying it here we get
= Sec²θ ( tan²θ )
= tan²θ Sec²θ
We have an identity , Sec²θ = 1 + tan²θ , applying it here , we get
= tan²θ ( 1 + tan²θ )
= tan²θ + tan⁴θ = RHS
Additional identities ---->
(1) Sin²θ + Cos²θ = 1
Sin²θ = 1 - Cos²θ
Cos²θ = 1 - Sin²θ
(2) 1 + Cot²θ = Cosec²θ
Cosec²θ - Cot²θ = 1
Cot²θ = Cosec²θ - 1
Similar questions