Math, asked by joeltjenny6193, 6 months ago

Sec 45° /sec 30°+ cosec 60°

Answers

Answered by naveena14366
0

Answer:

root2

Step-by-step explanation:

  1. value of sec45=root2
  2. value of sec30=2/root3
  3. value of cosec60=2/root3

now

root2/ 2/root3+2/root3

then 2/root3 will get cancelled then root2 will be the answer

Attachments:
Answered by brokendreams
0

Step-by-step explanation:

Given : A trigonometric equation \frac{sec45\°}{sec30\°} +cosec60\°

To find : the value of given trigonometric equation.

Trigonometric values used :

  1. sec45\°=\sqrt2
  2. sec30\°=\frac{2}{\sqrt3}
  3. cosec60\°=\frac{2}{\sqrt3}
  • Calculation for equation

We have

⇒   \frac{sec45\°}{sec30\°} +cosec60\°

also we have the values of all trigonometric functions so by putting them we get the answer,

sec45\°=\sqrt2     ,      sec30\°=\frac{2}{\sqrt3}        and   cosec60\°=\frac{2}{\sqrt3}

⇒  \frac{\sqrt2}{\frac{2}{\sqrt3} } +\frac{2}{\sqrt3}

⇒  \frac{\sqrt2*\sqrt3}{{2} } +\frac{2}{\sqrt3}

taking L.C.M as 2\sqrt3 ,

⇒  \frac{\sqrt2*\sqrt3*\sqrt3+2*2}{2\sqrt3}

⇒  \frac{3\sqrt2+4}{2\sqrt3}

Hence we get the answer as \frac{3\sqrt2+4}{2\sqrt3}.

Similar questions