Math, asked by shourjyanandi, 1 month ago

sec(45degree + theta ) sec (45 degree
- theta) = 2 sec 2 theta​

Answers

Answered by Anonymous
19

Refer attachment

Used formulae:-

  • secθ = 1/cosθ
  • cos(A+B)cos(A-B) = cos²A - sin²B
  • cos2θ = 1-2sin²θ

By using these formulae We can get LHS= RHS

Know more formulae:-

Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

csc²θ - cot²θ = 1

Trigonometric relations

sinθ = 1/cscθ

cosθ = 1 /secθ

tanθ = 1/cotθ

tanθ = sinθ/cosθ

cotθ = cosθ/sinθ

Trigonometric ratios:-

sinθ = opp/hyp

cosθ = adj/hyp

tanθ = opp/adj

cotθ = adj/opp

cscθ = hyp/opp

secθ = hyp/adj

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Attachments:
Answered by VenomArmy
90

\huge\fbox\red {answer}

Taking L.H.S

Sec(45+a)sec(45-a)

=> 1/cos(45 + a)*cos(45 -a)

=> 1/(cos45cosa – sin45sina) (cos45cosa+sin45sina)

=> 2/(cosa -sina) (cosa + sina)

=> 2/(cos^2a -sin^2a)

=> 2/cos2a

=> 2sec2a

L..H.S = R.H.S

Step-by-step explanation:

Hope it helps u ☺️

Similar questions