Sec^4A-cos^4A=1-2cos^2A
Answers
Answered by
9
Oops , your question is wrong ! Pz write correct question .
Correct question is ---> sin⁴A - cos⁴A = 1 - 2cos²A
LHS = sin⁴A - cos⁴A
= (sin²A - cos²A)(sin²A + cos²A)
As you know, sin²x + cos²x = 1
So, sin²A + cos²A = 1
∴ LHS = (sin²A - cos²A) × 1
= (1 - cos²A - cos²A) [ sin²x = 1 - cos²x from identities ]
= 1 - 2cos²A = RHS
[Hence, proved]
Correct question is ---> sin⁴A - cos⁴A = 1 - 2cos²A
LHS = sin⁴A - cos⁴A
= (sin²A - cos²A)(sin²A + cos²A)
As you know, sin²x + cos²x = 1
So, sin²A + cos²A = 1
∴ LHS = (sin²A - cos²A) × 1
= (1 - cos²A - cos²A) [ sin²x = 1 - cos²x from identities ]
= 1 - 2cos²A = RHS
[Hence, proved]
Answered by
1
Hey friend,
Here is your answer,
______________________________________________________________
To prove : sin⁴A - cos⁴A = 1 - 2cos²A
LHS:-
=> sin⁴A - cos⁴A
=> (sin²A - cos²A)(sin²A + cos²A)
=> (sin²A - cos²A) × 1 {sin²x + cos²x = 1}
=> (1 - cos²A - cos²A) {sin²x = 1 - cos²x}
=> 1 - 2cos²A = RHS
______________________________________________________________
Hope this helped you !!
Please mark as brainliest !!
Here is your answer,
______________________________________________________________
To prove : sin⁴A - cos⁴A = 1 - 2cos²A
LHS:-
=> sin⁴A - cos⁴A
=> (sin²A - cos²A)(sin²A + cos²A)
=> (sin²A - cos²A) × 1 {sin²x + cos²x = 1}
=> (1 - cos²A - cos²A) {sin²x = 1 - cos²x}
=> 1 - 2cos²A = RHS
______________________________________________________________
Hope this helped you !!
Please mark as brainliest !!
Similar questions
Math,
8 months ago
Math,
8 months ago
History,
1 year ago
Social Sciences,
1 year ago
Math,
1 year ago