Math, asked by andy9693, 1 year ago

Sec^4A-tan^4A=1 +2tan^2 A

Answers

Answered by THS582003
107
sec^4A - tan^4A
(sec^2A)^2 - (tan^2A)^2
(sec^2A + tan^2A) (sec^2A - tan^2A)
because (a^2 - b^2) = (a + b) (a - b)
so, (sec^A + tan^2A).1
(1 + tan^2A + tan^2A)
(1 + 2tan^2A).
Answered by pulakmath007
12

\displaystyle \sf{  {sec}^{4}A - {tan}^{4}A  = 1 + 2{tan}^{2}A } \:  \: is \bf \: proved

Given :

The expression

\displaystyle \sf{  {sec}^{4}A - {tan}^{4}A  = 1 + 2{tan}^{2}A }

To find :

Prove the expression

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

\displaystyle \sf{  {sec}^{4}A - {tan}^{4}A  = 1 + 2{tan}^{2}A }

Step 2 of 2 :

Prove the expression

LHS

\displaystyle \sf{  =  {sec}^{4}A - {tan}^{4}A  }

 \sf = {({sec}^{2}A )}^{2} -{( {tan}^{2}A )}^{2}

\displaystyle \sf  =  ({sec}^{2}A  + {tan}^{2}A ) ({sec}^{2}A -{tan}^{2}A )\:  \:  \: \bigg[ \:   \because \: {a}^{2} -  {b}^{2}  = (a + b)(a - b)\bigg]

 \sf =  (1 + {tan}^{2}A  + {tan}^{2}A ) (1 +  {tan}^{2}A-{tan}^{2}A )\:  \:  \: \bigg[ \:  \because \:{sec}^{2}A = 1 + {tan}^{2}A \bigg]

\displaystyle \sf{ = (1 +2 {tan}^{2}A )  \times 1  }

\displaystyle \sf{ = 1 +2 {tan}^{2}A  }

= RHS

Hence the proof follows

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if x cos a=8 and 15cosec a=8sec a then the value of x is

https://brainly.in/question/46325503

2. 7 cos 30° + 5 tan 30° + 6 cot 60° is

https://brainly.in/question/46167849

3. 1+ sin2α = 3 sinα cosα, then values of cot α are

https://brainly.in/question/46265791

Similar questions