Sec^4theta-sec^2theta=tan^4+tan^2theta
Answers
Answered by
9
To Proove : sec⁴∅ - sec²∅ = tan⁴∅ + tan²∅
Proof :
sec⁴∅ - sec²∅
( sec²∅ × sec²∅ ) - sec²∅
sec²( sec² - 1 )
We know,
sec²A - 1 = tan²A
sec²∅ ( tan²A )
We know,
sec²A = tan²A + 1
( tan²∅ + 1 ) ( tan²∅ )
tan⁴∅ + tan²∅
Proved.
Proof :
sec⁴∅ - sec²∅
( sec²∅ × sec²∅ ) - sec²∅
sec²( sec² - 1 )
We know,
sec²A - 1 = tan²A
sec²∅ ( tan²A )
We know,
sec²A = tan²A + 1
( tan²∅ + 1 ) ( tan²∅ )
tan⁴∅ + tan²∅
Proved.
BrainlyVirat:
Great :)
Answered by
17
To Proove : sec⁴A - sec²A= tan⁴A + tan²A
Proof :
sec⁴A- sec²A
( sec²A × sec²A ) - sec²A
sec²( sec² - 1 )
sec²A ( tan²A )
sec²A = tan²A + 1
( tan²A + 1 ) ( tan²A )
tan⁴A + tan²A
Proved.
Proof :
sec⁴A- sec²A
( sec²A × sec²A ) - sec²A
sec²( sec² - 1 )
sec²A ( tan²A )
sec²A = tan²A + 1
( tan²A + 1 ) ( tan²A )
tan⁴A + tan²A
Proved.
Similar questions