sec^6-tan^6=1+3sec^2*tan^2
Answers
Answered by
3
Please see the attachment
Attachments:
nair8539:
sry but i didnt get how did you got sec -tan ?
Answered by
2
Sec⁶ - tan⁶ = 1 + 3 sec² tan²
L. H. S.
=> ( Sec² - tan² )³
=> ( Sec² ) ³ - ( tan² )³
=> Using identity,
1 + tan² ¢ = sec² ¢
1 = sec² ¢ - tan² ¢
And
x³ - y³ = ( x - y) ( x² + y² + xy )
=> ( Sec² - tan² ) ( sec⁴ + tan⁴ + sec² tan² )
=> 1 [ ( sec² + tan² )² + sec² tan² ]
=> 1 [ ( Sec²)² + ( tan²)² + 2 sec ² tan² + sec² tan² ]
= 1 [ ( sec²)² + (tan²)² + 2 sec ² tan² - 2 sec² tan² + sec² tan ² ]
=> 1 [ ( sec² - tan²) + 2 sec²tan² + sec² tan² ]
=> [ 1 + 3 sec² tan² ]
=> R. H. S.
L. H. S.
=> ( Sec² - tan² )³
=> ( Sec² ) ³ - ( tan² )³
=> Using identity,
1 + tan² ¢ = sec² ¢
1 = sec² ¢ - tan² ¢
And
x³ - y³ = ( x - y) ( x² + y² + xy )
=> ( Sec² - tan² ) ( sec⁴ + tan⁴ + sec² tan² )
=> 1 [ ( sec² + tan² )² + sec² tan² ]
=> 1 [ ( Sec²)² + ( tan²)² + 2 sec ² tan² + sec² tan² ]
= 1 [ ( sec²)² + (tan²)² + 2 sec ² tan² - 2 sec² tan² + sec² tan ² ]
=> 1 [ ( sec² - tan²) + 2 sec²tan² + sec² tan² ]
=> [ 1 + 3 sec² tan² ]
=> R. H. S.
Similar questions