Math, asked by Anonymous, 3 months ago

sec (65degree +thitha)-cosec(25degree -thitha)​

Answers

Answered by mathdude500
3

Given Question :-

Find the value of

 \tt \: sec(65\degree \:  +   \theta \:) - cosec(25\degree \: - \theta \:)

\large\underline{\bold{Solution-}}

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

(1). \:  \boxed{ \bf \: sec(90\degree \: -  \: x) = cosecx}

Given that

 \tt \: sec(65\degree \:  +  \theta \:) - cosec(25\degree \: - \theta \:)  -  - (1)

 \bf \: Let \: 65\degree \:  +  \theta \: = x

and

 \bf \: Let \: 25\degree \: - \theta \: = y

So,

\rm :\implies\:x + y = 65\degree \:  +  \theta \: + 25\degree \: - \theta \:

\rm :\implies\:x + y = 90\degree \:

\rm :\implies\:y = 90\degree \: - x

\rm :\implies\:secy = sec(90\degree \: - x)

\rm :\implies\:secy = cosecx

\bf\implies \:cosecx \:   -  \: secy \:  =  \: 0

Put values of x and y, we get

\bf :\implies\:cosec(65\degree \: + \theta \:) - sec(25\degree \: - \theta \:) = 0

Additional Information :-

(1). \:  \boxed{ \bf \: sin(90\degree \: - \theta \:) =  \: cos\theta \:}

(2). \:  \boxed{ \bf \: cos(90\degree \: - \theta \:) =  \: sin\theta \:}

(3). \:  \boxed{ \bf \: tan(90\degree \: - \theta \:) =  \: cot\theta \:}

(4). \:  \boxed{ \bf \: cot(90\degree \: - \theta \:) =  \: tan\theta \:}

(5). \:  \boxed{ \bf \: cosec(90\degree \: - \theta \:) =  \: sec\theta \:}

Answered by utkarshsahu1804
3

Step-by-step explanation:

hii good morning how are you

Similar questions