Sec 70- cot 40 (angles in degrees)
Answers
Given : Sec 70- cot 40 (angles in degrees)
To find : value
Solution
Sec 70 - Cot 40
= 1/Cos70 - Cos40/Sin40
= 1/Sin20 - Cos40/Sin40
sin2x = 2sinxcosx
= 1/Sin20 - Cos40/2Sin20Cos20
=(2Cos20 - Cos40)/2Sin20Cos20
=(2Cos(60-40) - Cos40)/Sin40
Cos(a-b) = cosacosb+sinasinb
= (2(Cos60Cos40 + Sin60Sin40) - Cos40)/Sin40
= (2 ((1/2) Cos40 + Sin60 Sin40 - Cos40)/Sin40
=( Cos40 + 2Sin60Sin40 - Cos40)/Sin40
= (2Sin60Sin40)/Sin40
= 2SIn60
=
learn more :
If sin(a+b) /cos(ab) =1-x/1+x then show that tan(tan45-a) (tan45-b) =x
https://brainly.in/question/8902002
os(b+ca)-cos(c+ab)+cos(a+bc)-cos(a+b+c)
https://brainly.in/question/11083488
Answer:
Hola ☺️
Step-by-step explanation:
Ur answer! ✌️✌️✌️✅✅✅
Sec 70 - Cot 40
use Sec = 1/Cos
& Cot = Cos/Sin
= 1/Cos70 - Cos40/Sin40
Use Cosx = Sin(90 - x)
= 1/Sin20 - Cos40/Sin40
sin2x = 2sinxcosx
= 1/Sin20 - Cos40/2Sin20Cos20
=(2Cos20 - Cos40)/2Sin20Cos20
=(2Cos(60-40) - Cos40)/Sin40
Cos(a-b) = cosacosb+sinasinb
= (2(Cos60Cos40 + Sin60Sin40) - Cos40)/Sin40
= (2 ((1/2) Cos40 + Sin60 Sin40 - Cos40)/Sin40
=( Cos40 + 2Sin60Sin40 - Cos40)/Sin40
= (2Sin60Sin40)/Sin40
= 2Sin60
= 2 ( root 3)/2
= root 3
Sec 70 - Cot 40 = root 3
Thanks ❤️❤️