Math, asked by adrishsikdar789, 9 months ago

Sec 70- cot 40 (angles in degrees)

Answers

Answered by amitnrw
5

Given : Sec 70- cot 40 (angles in degrees)

To find : value

Solution

Sec 70 - Cot 40

= 1/Cos70 - Cos40/Sin40

= 1/Sin20 - Cos40/Sin40

sin2x = 2sinxcosx

= 1/Sin20 - Cos40/2Sin20Cos20

=(2Cos20 - Cos40)/2Sin20Cos20

=(2Cos(60-40) - Cos40)/Sin40

Cos(a-b) = cosacosb+sinasinb

= (2(Cos60Cos40 + Sin60Sin40) - Cos40)/Sin40

= (2 ((1/2) Cos40 + Sin60 Sin40 - Cos40)/Sin40

=( Cos40 + 2Sin60Sin40 - Cos40)/Sin40

= (2Sin60Sin40)/Sin40

= 2SIn60

=

 \sqrt{3}

learn more :

If sin(a+b) /cos(ab) =1-x/1+x then show that tan(tan45-a) (tan45-b) =x

https://brainly.in/question/8902002

os(b+ca)-cos(c+ab)+cos(a+bc)-cos(a+b+c)

https://brainly.in/question/11083488

Answered by Anonymous
6

Answer:

Hola ☺️

Step-by-step explanation:

Ur answer! ✌️✌️✌️✅✅✅

Sec 70 - Cot 40

use Sec = 1/Cos

& Cot = Cos/Sin

= 1/Cos70 - Cos40/Sin40

Use Cosx = Sin(90 - x)

= 1/Sin20 - Cos40/Sin40

sin2x = 2sinxcosx

= 1/Sin20 - Cos40/2Sin20Cos20

=(2Cos20 - Cos40)/2Sin20Cos20

=(2Cos(60-40) - Cos40)/Sin40

Cos(a-b) = cosacosb+sinasinb

= (2(Cos60Cos40 + Sin60Sin40) - Cos40)/Sin40

= (2 ((1/2) Cos40 + Sin60 Sin40 - Cos40)/Sin40

=( Cos40 + 2Sin60Sin40 - Cos40)/Sin40

= (2Sin60Sin40)/Sin40

= 2Sin60

= 2 ( root 3)/2

= root 3

Sec 70 - Cot 40 = root 3

Thanks ❤️❤️

Similar questions