sec 840º.cot (- 945°) + sin 600° tan (-690°)=3/2
Answers
Step-by-step explanation:
x
2
+y
2
=(asinθ+ccosθ)
2
+(acosθ−csinθ)
2
=a
2
sin
2
θ+c
2
cos
2
θ+2acsinθcosθ+a
2
cos
2
θ+c
2
sin
2
θ−2acsinθcosθ
=a
2
(sin
2
θ+cos
2
θ)+c
2
(sin
2
θ+cos
2
θ)
=a
2
+c
2
Step-by-step explanation:
sin600×tan(−690)+sec840×cot(−945)
So, sin 600 = sin(360 + 240)
sin 600 = sin 240 = sin (180 + 60)
sin 600 = -sin 60
sin 600 = -\frac{\sqrt 3}{2}−
2
3
tan (-690) = - tan 690
tan (-690) = - tan(360 + 330)
tan (-690) = - tan 330 = - tan (270 + 60)
tan (-690) = - cot 60
tan (-690) = -\frac{1}{\sqrt 3}−
3
1
sec 840 = sec (720 + 120)
sec 840 = sec 120 = sec (90 + 30)
sec 840 = - cosec 30
sec 840 = -2
cot (-945) = - cot 945 = - cot (720 + 225)
cot (-945) = - cot 225 = - cot (270 - 45)
cot (-945) = - cot 45 = -1
Now, we can putting all the value in equation
sin 600\times tan (-690) + sec 840\times cot (-945)sin600×tan(−690)+sec840×cot(−945)
-\frac{\sqrt 3}{2}\times -\frac{1}{\sqrt 3}+ -2\times-1−
2
3
×−
3
1
+−2×−1
\frac{1}{2} + 2
2
1
+2
\frac{5}{2}
2
5