Math, asked by dhamanavya123, 7 months ago

. sec A (1 - sin A) (sec A + tan A) = 1​

Answers

Answered by Anonymous
1

Question:-

  \sec A(1 -  \sin A )( \sec  A  +  \tan \: A) = 1

Solution:-

Using this trigonometry identities

 \rm \:  \to \sec(A)  =  \frac{1}{ \cos  A }

 \to \rm \:  \tan(A)  =  \frac{ \sin(A) }{ \cos(A) }

We get

 \rm \:  \frac{1}{ \cos A } (1 -  \sin \: A)( \frac{1}{ \cos A }  +  \frac{ \sin A }{ \cos A } )

 \rm \:  \frac{1 -  \sin(A) }{ \cos(A) }  \times  \frac{1 +  \sin(A) }{ \cos(A) }

Using this identity

 \to \:  \rm \: (a - b)(a + b) = ( {a}^{2}   -  {b}^{2} )

 \rm \:  \frac{1 -  \sin {}^{2} (A) }{ \cos {}^{2} (A) }

Trigonometry identity

 \rm \: 1 -  \sin {}^{2} (A)  =  \cos {}^{2} (A)

 \rm \:  \frac{ \cos {}^{2} (A) }{ \cos {}^{2} (A) }

 = 1

Hence proved

Similar questions