Math, asked by Gauriwdw, 3 months ago

sec A (1 - sin A) (sec A + tan A) = 1​

Answers

Answered by deepakkumar9254
4

Solution :-

Here, L.H.S. = sec A (1 - sin A) (sec A + tan A)

R.H.S. = 1

Solving L.H.S. -

=> sec A (1 - sin A) (sec A + tan A)

=> \frac{1}{cos\:\:A}(1 - sin A) (\frac{1}{cos\:\:A} + \frac{sin\:\:A}{cos\:\:A})

[sec Ф = \frac{1}{cos\:\:\theta}  and tan Ф = \frac{sin\:\:\theta}{cos\:\:\theta}]

=> \frac{1 - sin A}{cos\:\:A}\times \frac{1+sin\:\:A}{cos\:\:A}

=> \frac{(1 - sin A)(1+sin\:\:A)}{cos^{2} \:\:A}

We know that,

(a-b)(a+b)= a² - b²

=> \frac{(1^{2}  - sin^{2}  A)}{cos^{2} \:\:A}

=> \frac{(1  - sin^{2}  A)}{cos^{2} \:\:A}

[1 - sin² Ф = cos² Ф]

=> \frac{cos^{2} \:\:A}{cos^{2} \:\:A}

=> 1 = R.H.S.

More To Know :-

\star cot θ = cos θ / sin θ

\star cot θ = 1 / tan θ

\star tan θ = sin θ / cos θ

\star tan θ = 1 / cos θ

\star sin² θ + cos² θ =1

\star sec² θ - tan² θ =1

Answered by Ranveerx107
1

Solution :-

Here, L.H.S. = sec A (1 - sin A) (sec A + tan A)

R.H.S. = 1

Solving L.H.S. -

=> sec A (1 - sin A) (sec A + tan A)

=> \frac{1}{cos\:\:A}(1 - sin A) (\frac{1}{cos\:\:A} + \frac{sin\:\:A}{cos\:\:A})

[sec Ф = \frac{1}{cos\:\:\theta}  and tan Ф = \frac{sin\:\:\theta}{cos\:\:\theta}]

=> \frac{1 - sin A}{cos\:\:A}\times \frac{1+sin\:\:A}{cos\:\:A}

=> \frac{(1 - sin A)(1+sin\:\:A)}{cos^{2} \:\:A}

We know that,

(a-b)(a+b)= a² - b²

=> \frac{(1^{2}  - sin^{2}  A)}{cos^{2} \:\:A}

=> \frac{(1  - sin^{2}  A)}{cos^{2} \:\:A}

[1 - sin² Ф = cos² Ф]

=> \frac{cos^{2} \:\:A}{cos^{2} \:\:A}

=> 1 = R.H.S.

Similar questions