sec A (1 - sin A) (sec A + tan A) = 1
Answers
Answered by
4
Solution :-
Here, L.H.S. = sec A (1 - sin A) (sec A + tan A)
R.H.S. = 1
Solving L.H.S. -
=> sec A (1 - sin A) (sec A + tan A)
=>
[sec Ф = and tan Ф = ]
=>
=>
We know that,
(a-b)(a+b)= a² - b²
=>
=>
[1 - sin² Ф = cos² Ф]
=>
=> 1 = R.H.S.
More To Know :-
cot θ = cos θ / sin θ
cot θ = 1 / tan θ
tan θ = sin θ / cos θ
tan θ = 1 / cos θ
sin² θ + cos² θ =1
sec² θ - tan² θ =1
Answered by
1
Solution :-
Here, L.H.S. = sec A (1 - sin A) (sec A + tan A)
R.H.S. = 1
Solving L.H.S. -
=> sec A (1 - sin A) (sec A + tan A)
=>
[sec Ф = and tan Ф = ]
=>
=>
We know that,
(a-b)(a+b)= a² - b²
=>
=>
[1 - sin² Ф = cos² Ф]
=>
=> 1 = R.H.S.
Similar questions
English,
1 month ago
Math,
1 month ago
Psychology,
1 month ago
English,
3 months ago
Biology,
10 months ago