Math, asked by archanasingh040305, 7 months ago

Sec A (1 – Sin A) (Sec A + Tan A)=……

(A) 0 (B) 1 (C) 2 (D) –1​

Answers

Answered by Anurag4111
0

Answer:

A 0

Step-by-step explanation:

.......... follow me

Answered by sonisiddharth751
1

Answer:

\large\bf\underline\red{Question ➡} \\  \\  \sf \: SecA(1-SinA)(SecA+TanA) =  \\  \\  \bf \: (A) =\sf \: 0  \\ \bf \: (B)  = \sf \: 1 \sf \:  \\   \bf \:( C ) =\sf \: 2 \\  \bf \: (D) =\sf  - 1 \\  \\  \\ \large\bf\underline\red{answer \: ➡} \\  \\ \large{\boxed{\mathfrak\red{\fcolorbox{magenta}{aqua}{1}}}} \\  \\ \large\sf\underline\red{basic \: information \: ➡}  \\  \\ ➥ \:  \bf \: SecA =  \sf \:  \frac{1}{CosA}  \\  \\ ➥ \:  \bf \: TanA =  \sf \: \frac{SinA}{CosA}   \\ \\ ➥ \:  \bf \: 1 -  {SinA}^{2}   =  \sf \:  {CosA}^{2}  \\  \\  \\ \large\sf\underline\red{step \: of \: solution \: ➡}  \\  \\  \sf \: SecA(1-SinA)(SecA+TanA)  \\  \\ ➳ \:  \sf \:  \frac{1}{CosA} (1 - SinA) \bigg( \frac{1}{CosA}  +  \frac{SinA}{CosA}  \bigg) \\  \\  \sf \: ➳ \:   \frac{1}{CosA} (1 - SinA) \bigg( \frac{1 + SinA}{CosA }  \bigg) \\  \\  \bf \: using \: formula \: ➴➴ \: \\  \sf  (a + b) (a  -  b)=  {(a)}^{2}  -  {(b)}^{2}  \\  \\➳  \sf \:  \frac{1}{CosA}  \times  \frac{1 -  {SinA}^{2} }{CosA}  \\  \\ ➳ \sf \:  \frac{1 -  {SinA}^{2} }{ {CosA}^{2} }  \\  \\ \sf \: using \: \:  \: ( 1 -  {SinA}^{2}  \:  =  {CosA}^{2} )\\  \\   ➳ \:  \sf \:  \frac{ {CosA}^{2} }{{CosA}^{2} }  \\  \\ ➳ \:  \sf \:  \frac{ { \cancel{CosA}^{2}} }{{ \cancel{CosA}^{2}} }  \\  \\ ➳  \: \: \large{\boxed{\mathfrak\red{\fcolorbox{magenta}{aqua}{1}}}}

therefore option (B) is correct .

additional matter

cotA = 1/tanA

cotA = cosA/sinA

cosecA = 1/sinA

sin²A + cos²A = 1

➳ 1 - sin²A = cos²A

➳ 1 - cos²A = sin²A

1 + tan²A = sec²A

➳ sec²A - tan²A = 1

➳ sec²A - 1 = tan²A

1 + cot²A = cosec²A

➳ cosec²A - 1 = cot²A

➳ cosec²A - cotA = 1

Similar questions