(sec A)^6 - (tan A)^6 = 1 + 3tan² A + 3tan⁴ A
Prove this equation.
Answers
Answered by
2
LHS
(sec A)^6 - (tan A)^6
(sec^2A)^3 - (tan^2A)^3
(sec^2A - Tan^2A)^3 + 3sec^2Atan^2A (sec^2A - tan^2A)
1 +3 (1+tan^2A)tan^2A
1 + 3tan^2A + 3tan^4A
Hence
LHS = RHS
proved
Answered by
1
Hey mate here is your answer.
✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡
Step-by-step explanation:
-------------------------------------------------------------------
sec^6 A-tan^6 A =1+3 tan^2 A+3 tan^4 A,
We know that a^3-b^3=(a-b)(a^2+ab+b^2),
∴sec^6 A-tan^6 A=(sec^2 A-tan^2 A)[(sec^2 A)^2+sec^2 A tan^2 A+(tan^2 A)^2],
sec^6 A-tan^6 A:
[(1+tan^2 A)-tan^2 A][(1+tan^2 A)^2+(1+tan^2 A)tan^2 A+tan^4 A] {∵sec^2A+1+tan^2A},
sec^6 A-tan^6 A:
(1+tan^2 A-tan^2 A)(1+tan^4 A+2tan^2 A+tan^2 A+tan^4 A+tan^4 A),
sec^6 A-tan^6 A=1+3tan^2 A+3tan^4 A.
L.H.S=R.H.S,proved.
_______________________________________________
Hope it helps you.✔✔✔
Please do mark as Brainliest.
Similar questions