Math, asked by Snigdha2161, 1 year ago

Sec(a-cos a ).(cot A+tan A )=secA.tan A

Answers

Answered by Sanskriti141
14

ANSWER

(secA \:  -  \: cosA)(cotA \:  +  \: tanA) \\  \\  =  >  \: ( \frac{1}{cosA \: }   \: -  \: cosA \: )( \:  \frac{cosA \: }{sinA \: }  \:  +  \:  \frac{sinA \: }{cosA \: }  \: ) \\  \\  =  > ( \frac{1 \:  -  \:  {cos}^{2} }{cos} \: )( \frac{ {cos}^{2} A \:  +  \:   {sin}^{2} A \: }{cosAsinA \: }   \: ) \\  \\  =  >  \ \: ( \frac{ {sin}^{2} A \: }{cosA}  \: ) ( \frac{1}{ cosAsinA \:   }) \\  \\  =  >  \frac{ {sin}^{2}A }{ {cos}^{2}A \: sin A \: }  \\  \\  =  >  \:  \frac{sinA \: }{ {cos}^{2} A \: }  \\  \\  =  > \: ( \frac{1}{cosA \: } )( \frac{sinA \: }{cosA \: } ) \\  \\  =  > secA \: . \: tanA \:  =  \: RHS \:  \\  \\  \\

{ HENCE PROVED }

INDENDITY USED :

➡ cos²A + sin²A = 1

 \frac{1}{cosA} = secA \\ \\

 \frac{sinA}{cosA} = tanA \\ \\

 \frac{cosA}{sinA} = cotA \\ \\

Thanks !

#answerwithquality

#BAL

Similar questions