Math, asked by shrinivasa74, 8 months ago

sec a -cos a× cot a + tan a = tan a sec a​

Answers

Answered by ItzAditt007
5

To Prove:-

 \\ \tt\longrightarrow( \sec a -  \cos a )\times ( \cot a +  \tan a) =  \tan a. \sec a \\

IDs Used:-

 \\ \tt\leadsto \sec \theta =  \frac{1}{ \cos \theta}.. .id(1) \\  \\ \tt\leadsto \cot \theta =  \frac{ \cos \theta}{ \sin \theta} ...id(2) \\  \\ \tt\leadsto \tan  \theta =  \frac{ \sin \theta}{ \cos \theta}. ..id(3)\\  \\   \tt\leadsto{ \sin }^{2}  \theta +  { \cos}^{2}  \theta = 1...id(4)

So lets siplify LHS:-

\\ \tt\mapsto (\sec a -  \cos a) \times ( \cot a +  \tan a). \\  \\   \tt = ( \dfrac{1}{ \cos a} -  \cos a) \times ( \frac{ \cos a }{ \sin a}  +  \frac{ \sin a}{ \cos a} )  . \\  \\  \rm[by \:  \: usings \:  \: ids(1)(2) \:  \: and(3)]\\  \\  \tt = ( \frac{1 -  { \cos a}^{2} }{ \cos a } ) \times ( \frac{ { \cos }^{2} a +  { \sin  }^{2} a  }{ \sin a. \cos a} ). \\  \\  \tt = \frac{  { \sin  }^{2} a }{ \cos a} \times  \frac{1}{ \sin a. \cos a}. \\  \\  \rm[by \:  \: using \:  \: id(4)].\\  \\   \tt =  \frac{ \cancel{ \sin  a} \times  \sin a }{ \cos a }   \times  \frac{1}{ \cancel{ \sin a}. \cos a } . \\  \\ \tt =  \frac{ \sin a}{ \cos a }  \times  \frac{1}{ \cos a} . \\  \\ \tt =  \tan  a. \sec a = rhs \\  \\  \rm \:  \: ..hence \:  \: proved..\\

Similar questions