Math, asked by narsinghkumar1951, 10 months ago

(Sec A - cos A) ( cot A + tan A) =tan A×sec A

Answers

Answered by DynamoX
3

Answer:

LHS = (1/cos A -cos A) (cosA/sinA + sin A/cos A)

= (1 - cos^2A/cos A) (cos^2A + sin^2A/sinAcosA)

= (sin^2A/cosA) ( 1 / sinAcosA)

= sin^2A/sinAcos^2A

= tanA x secA

Answered by Anonymous
2

Step-by-step explanation:

 \mathfrak{ \large \bold \blue{ \underline{ \underline{question}}}} \\  \implies{ \large{( \sec(a) -  \cos(a) )( \cot(a)   +  \tan(a) =  \tan(a) \times  \sec(a) )  }} \\  \\ { \large \bold \orange{ \underline{solution}}} \\ \implies{ \large{( \sec(a) -  \cos(a) )( \cot(a)   +  \tan(a) =  \tan(a) \times  \sec(a) )  }} \\ \implies{ \large{( \frac{1}{ \cos(a) } -  \cos(a)  )( \frac{ \cos(a) }{ \sin(a)   } +  \frac{ \sin(a) }{ \cos(a) }  )}} \\ \implies{ \large{ \frac{1 -  { \cos {}^{2} (a) }^{} }{ \cos(a) }  \times  \frac{ \cos {}^{2} (a)  +  \sin {}^{2} (a) }{ \cos(a)  \times  \sin(a)  }  }} \\ \implies{ \large{ \frac{ \sin {}^{2} (a) }{ \cos(a) } \times  \frac{1}{ \cos(a) \sin(a)  }  }} \\ \implies{ \large{ \frac{ \sin(a) }{ \cos(a)  } \times \frac{1}{ \cos(a) }    }} \\ \implies{ \large{ \tan(a) \times  \sec(a)  }} \\  \\ { \large \bold \red{ \underline{hence \: proved}}}

Similar questions