(sec A - cos A) (sec A + cos A)
= sinº A + tan? A
Answers
Answered by
0
Answer:
Step-by-step explanation:
Given,
LHS = (sec A - cos A) (sec A + cos A)
=( sec ^2 A - cos^2 A) [since (a-b) (a+b) = a^2 -b^2 ]
= ( 1 + tan ^2 A - cos ^2 A ) [∵sec^2 A = 1 + tan ^2 A ]
= (1 - cos ^2 A + tan ^2 A )
= sin^ 2 A + tan^2 A = RHS
∴LHS = RHS
Hence (sec A - cos A ) (sec A + cos A ) = sin^2 A + tan^2 A is proved.
Similar questions