Math, asked by rakeshfb449, 10 months ago

(sec A +cosec)(sin A+ cosA) = 2 + sec A cosecA​

Answers

Answered by viditjn02
0

Above is the step by step solurion

Attachments:
Answered by raushan6198
0

Answer:

 ( \sec(a)  +  \cosec(a) )( \sin(a)  +  \cos(a)  \\  =  \frac{1}{ \cos(a) }  +  \frac{1}{ \sin(a) }( \sin(a)  +  \cos(a) ) \\  =  \frac{ \sin(a) +  \cos(a)  }{ \cos(a) \times  \sin(a)  }  \times ( \sin(a)  +  \cos(a) ) \\  =  {( \sin(a) +  \cos(a) ) }^{2}  \times  \frac{1}{ \cos(a)  \times  \sin(a) }  \\  =   { \sin(a) }^{2}  +  { \cos(a) }^{2}  + 2 \times  \sin(a)  \times  \cos(a)  \times   \frac{1}{ \sin(a)  \times  \cos(a) }  \\  =( 1 + 2 \sin(a)  \cos(a) ) \times  \frac{1}{ \sin(a)  \cos(a) }  \\  =  \frac{1}{ \sin(a) \cos(a)}  +  \frac{2 \sin(a) \cos(a)  }{ \sin(a)  \cos(a) }  \\  = sec(a)cosec(a) + 2 \\  = 2 +s ec(a)cosec(a) \: proved

Similar questions