Sec A+Tan A =1/3,What is Sec A – Tan A ?
Answers
Answered by
0
[tex]sec^{2} x- tan^{2} x=1
let secx-tanx be x
sec^{2} x- tan^{2} x=1
[/tex]
(secx+tanx)(secx-tanx)=1
since
1/3(secx-tanx)=1
secx-tanx=3
(secx+tanx)(secx-tanx)=1
since
1/3(secx-tanx)=1
secx-tanx=3
Answered by
1
We know that,
1+tan²A = sec²A
⇒sec²A - tan²A = 1
∵(a+b)(a-b) =(a²-b²)
∴sec²A - tan²A = 1
⇒(secA+tanA)(secA-tanA) =1
⇒(secA-tanA)×(1/3) =1
⇒(secA - tanA) = 3
1+tan²A = sec²A
⇒sec²A - tan²A = 1
∵(a+b)(a-b) =(a²-b²)
∴sec²A - tan²A = 1
⇒(secA+tanA)(secA-tanA) =1
⇒(secA-tanA)×(1/3) =1
⇒(secA - tanA) = 3
Similar questions
English,
8 months ago
Chemistry,
8 months ago
Social Sciences,
1 year ago
Science,
1 year ago
Math,
1 year ago