Math, asked by HelpingHandJai, 11 months ago

(sec A+ tan A - 1) (sec A- tan A + 1) = 2 tan A​

Answers

Answered by mysticd
10

Answer:

 LHS = (secA+tanA-1)(secA-tanA+1)\\= [secA+(tanA-1)][ secA-(tanA-1)]\\=sec^{2}A - (tanA-1)^{2}

 \boxed {\pink { (x+y)(x-y) = x^{2} - y^{2} }}

 = sec^{2}A - ( tan^{2} A + 1^{2} - 2tanA )\\= sec^{2}A - ( sec^{2} A - 2tanA )

 \boxed { \pink { tan^{2}A + 1 = sec^{2} A }}

 = sec^{2} A - sec^{2} A + 2tanA

 = 2tanA

 = RHS

 Hence , proved

•••♪

Similar questions