Math, asked by effiongemma28921, 2 months ago

(Sec A+Tan A-1)(Sec A- Tan A+1)=2tanA

Answers

Answered by mathdude500
2

\large\underline{\sf{To\:prove - }}

\rm :\longmapsto\:(secA + tanA - 1)(secA - tanA + 1) = 2tanA

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:(secA + tanA - 1)(secA - tanA + 1)

\rm \:  =  \:  \: \bigg(secA + (tanA  - 1) \bigg) \bigg(secA - (tanA - 1) \bigg)

We know,

\boxed{ \bf{ \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}}}

\rm \:  =  \:  \:  {sec}^{2}A -  {(tanA - 1)}^{2}

We know,

\boxed{ \bf{ \:  {(x - y)}^{2} =  {x}^{2} +  {y}^{2} - 2xy}}

So, using this, we get

\rm \:  =  \:  \:  {sec}^{2}A -  ( {tan}^{2}A + 1 - 2tanA)

We know,

\boxed{ \bf{ \: 1 +  {tan}^{2}x =  {sec}^{2}x}}

So, using this we get

\rm \:  =  \:  \:  {sec}^{2}A - ( {sec}^{2}A - 2tanA)

\rm \:  =  \:  \:  {sec}^{2}A - {sec}^{2}A  +  2tanA

\rm \:  =  \:  \: 2tanA

Hence, Proved

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by TrustedAnswerer19
55

Answer:

Given,

 \sf \: (secA + tanA - 1).(secA - tanA + 1) \\  \\  =   \sf \{secA + (tanA  - 1) \}. \{secA - (tanA - 1) \} \\   \\ \sf =  {sec}^{2} A -  {(tan}^{} A - 1) ^{2}  \:  \:   \pink{\{   \because{x}^{2}  -  {y}^{2}  = (x + y)(x - y) \} }\\  \\  \sf =  {sec}^{2} A -  \{  \red{{tan}^{2} A} - 2.tanA.1 +  \red{ {1}^{2}}  \} \\  \\  \sf =  {sec}^{2} A -  \{  \red{{sec}^{2} A} - 2tanA \} \:  \:  \:  \:   \red{\{\because \:  {sec}^{2} A = 1 +  {tan}^{2} A \}} \\  \\  \sf =   \cancel{{sec}^{2} A }-  \red{\cancel { {sec}^{2} A} }+ 2tanA \\  \\  \sf = 2tanA \\  \\

So,

L.H.S = R.H.S

Hence proved.

Similar questions