Math, asked by eihitbanerjee, 8 months ago

(sec A + tan A) (1 - sin A)​

Answers

Answered by MrChauhan96
1

\bf\purple{\underline{\boxed{Question}}}

\:

\small\tt{(Sec\:A\:+\:tan\:A)\:(1\:-sin\:A)}

\:

\bf\purple{\underline{\boxed{Solution}}}

\:

\small\tt{(Sec\:A\:+\:tan\:A)\:(1\:-sin\:A)}

\small\text{As we know that ,}

\:

\small\tt{SecA\:=\:{\frac{1}{cosA}}}

\:

\small\tt{And\:tanA\:=\:{\frac{sinA}{CosA}}}

\:

\small\text{According to Question ,}

\:

\small\tt{{\frac{1}{cosA}}\:+\:{\frac{sinA}{CosA}}\:(1-SinA)}

\:

\small\text{Taking LCM ,}

\:

\small\tt{{\frac{CosA\:+\:SinA\:CosA}{Cos^{2}A}}\:(1-SinA)}

\:

\small\text{Taking cosA common }

\:

\small\tt{CosA\:{\frac{(1+\:SinA)}{Cos^{2}A}}\:(1-SinA)}

\:

\small\tt{\cancel{CosA}\:{\frac{(1+\:SinA)}{Cos^{\cancel 2}A}}\:(1-SinA)}

\:

\small\tt{{\frac{(1\:+\:SinA)}{CosA}}\:(1-SinA)}

\:

\small\tt{\frac{1\:-\:Sin^{2}A}{CosA}}

\:

\small\tt\red{\underline{\boxed{1-sin^{2}A\:=\:Cos^{2}A}}}

\:

\small\tt{\frac{Cos^{\cancel2}A}{CosA}}

\:

\small\tt\red{\underline{\boxed{\rightarrow\:\:\:CosA}}}

\:

\bf\purple{\underline{\boxed{Thanks}}}

Similar questions