Math, asked by ahmedhusain98886, 5 months ago

(Sec A + Tan A)(1 - Sin A) =

Answers

Answered by sckbty72
0

Answer:

cos A

Step-by-step explanation:

(Sec A + Tan A)(1 - Sin A)

= sec A + tan A - tan A - sin^2 A / cos A

= 1 / cos A - sin^2 A / cos A = (1 - sin^2 A) / cos A = cos^2 A / cos A = cos A

Answered by InfiniteSoul
4

\sf{\star{\boxed{\large{\mathfrak{\pink{ Solution}}}}}}

⠀⠀⠀⠀

\sf : \implies\: {\bold{ ( sec A + Tan A) ( 1 - Sin A) }}

⠀⠀⠀⠀

  • \sf{\red{\boxed{\bold{Sec A = \dfrac{1}{cosA}}}}}

⠀⠀⠀⠀

\sf : \implies\: {\bold{ ( \dfrac{1}{cos A} + Tan A) ( 1 - Sin A) }}

⠀⠀⠀⠀

  • \sf{\red{\boxed{\bold{Tan A = \dfrac{SinA}{Cos A}}}}}

⠀⠀⠀⠀

\sf : \implies\: {\bold{ \bigg( \dfrac{1}{cosA} + \dfrac{SinA}{CosA} \bigg) ( 1 - Sin A) }}

⠀⠀⠀⠀

\sf : \implies\: {\bold{ \bigg( \dfrac{1 + SinA}{CosA} \bigg) ( 1 - Sin A) }}

⠀⠀⠀⠀

\sf : \implies\: {\bold{ \dfrac{ ( 1 + SinA)( 1 - SinA)}{Cos A}}}

⠀⠀⠀⠀

  • \sf{\red{\boxed{\bold{( a + b )( a - b ) = a^2 - b^2}}}}

⠀⠀⠀⠀

\sf : \implies\: {\bold{ \dfrac{1^2 - Sin^2A}{CosA} }}

⠀⠀⠀⠀

\sf : \implies\: {\bold{ \dfrac{1 - Sin^2A}{ CosA}}}

⠀⠀⠀⠀

  • \sf{\red{\boxed{\bold{1 - Sin^2A = Cos^2A}}}}

⠀⠀⠀⠀

\sf : \implies\: {\bold{ \dfrac {Cos^2A}{CosA} }}

⠀⠀⠀⠀

\sf : \implies\: {\bold{ \dfrac{CosA \times \cancel { CosA}}{\cancel{CosA}} }}

⠀⠀⠀⠀

\sf : \implies\: {\bold{ CosA}}

⠀⠀⠀⠀

\sf{\star{\boxed{\mathfrak{\orange{ CosA }}}}}


Brâiñlynêha: Awesome!
Similar questions