(sec A + tan A) (1 – sin A) = ?
Answers
Answered by
2
Step-by-step explanation:
L.H.S.
= sin A/(sec A + tan A – 1) + cos A/(cosec A + cot A – 1)
= [sin A/(1/cos A + sin A/cos A) – 1] + [cos A/(1/sin A + cos A/sin A) – 1]
= [sin A/(1 + sin A – cos A)/cos A] + [cos A/(1 + cos A – sin A)/sin A]
= sin A.cos A/1 + sin A – cos A + sin A.cos A/1 + cos A – sin A
= sin A. cos A (1 + cos A – sin A + 1 + sin A – cos A)/[1 + (sin A – cos A)][1 – (sin A – cos A)]
= 2 sin A.cos A/(1)2 – (sin A – cos A)2
= 2 sin A.cos A/(1 – (sin2 A + cos2 A – 2 sin A.cos A)
= 2 sin A.cos A/1 – 1 + 2 sin A.cos A
= 2/2 = 1 = R.H.S.
Hence proved.
Answered by
0
Answer:
CosA
Step-by-step explanation:
secA = 1/cosA
tanA = sinA/cosA
secA + tanA = (1+sinA)/cosA
(secA + tanA)*(1 - sinA) = ((1 + sinA) / cosA ) * (1 - sinA)
= (1 - sin^2A)/cosA
= cos^2A/cosA
= cosA
Similar questions
English,
9 days ago
English,
9 days ago
History,
19 days ago
Math,
19 days ago
Social Sciences,
9 months ago