Math, asked by vazduglas, 2 months ago

(sec A + tan A)(1-sin A) = cos A​

Answers

Answered by aryamanmandal0201
1

Step-by-step explanation:

(sec A + tan A)(1-sin A) = cos A

=>secA-secA×sinA+tanA-tanA×sinA=cosA

=>secA-tanA+tanA-sin²A/cosA=cosA

=>secA-sin²A/cosA=cosA

=>1-sin²A/cosA=cosA

=>cos²A/cosA=cosA

=>cosA=cosA

Answered by StormEyes
2

Solution!!

\sf (\sec A +\tan A)(1-\sin A)=\cos A

Taking LHS,

\sf =(\sec A +\tan A)(1-\sin A)

Use \sf \sec \theta =\dfrac{1}{\cos \theta } to transform the expression.

\sf =\left(\dfrac{1}{\cos A}+\tan A\right)(1-\sin A)

Use \sf \tan \theta =\dfrac{\sin \theta }{\cos \theta } to transform the expression.

\sf =\left(\dfrac{1}{\cos A}+\dfrac{\sin A}{\cos A}\right)(1-\sin A)

Take the LCM.

\sf =\left(\dfrac{1+\sin A}{\cos A}\right)(1-\sin A)

Calculate the product.

\sf =\dfrac{(1+\sin A)(1-\sin A)}{\cos A}

Use (a + b)(a - b) = a² - b² to simplify the expression.

\sf =\dfrac{1-\sin ^{2}A}{\cos A}

Use \sf 1-\sin ^{2}\theta =\cos ^{2}\theta to simplify the expression.

\sf =\dfrac{\cos ^{2}A}{\cos A}

Simplify the expression.

\sf =\cos A

LHS = RHS

Hence, proved.

Similar questions