(sec A+ tan A)(1- sin A)=cos A
prove
Answers
Answered by
2
Answer:
Step-by-step explanation:
(sec A+tan A)(1-sinA)
=(1/cos A + sin A/cos A)(1-sinA)
=[(1+sinA)/cosA](1-sinA)
=(1+sinA)(1-sinA)/cosA
=(1-sin^2 A)/cosA
=(cos^2 A)/cos A
=cos A
Hence proved ....
Hope it helps...
Please mark brainliest
Answered by
0
Answer:
Step-by-step explanation:
LHS:(Sec A + Tan a)(1 - Sin A)
=(1/cos A + sin A/cos A)(1-sinA) {sec A = 1/cos A , Tan A = sin A/cos A }
As the denominator is common
=[(1+sinA)/cos A] (1-sinA)
multiplying (1- Sin A) we get,
=(1+sinA)(1-sinA)/cos A
{(a+ b)(a - b) = a^2 - b^2}
=(1-sin^2 A)/cos A
{ 1 - Sin A = Cos A then, 1 - Sin^2 A = Cos^2 A}
=(cos^2 A)/cos A
=cos A = RHS
Hence, proved.
Similar questions
Computer Science,
2 months ago
English,
2 months ago
English,
2 months ago
Social Sciences,
5 months ago
Biology,
11 months ago