Math, asked by hyyy54, 24 days ago

(Sec A + tan A) (1-sinA) =​

Answers

Answered by Anonymous
21

\bf\huge \gray{ANSWER}

 \large \text{(sec \: A+tan \: A)(1−sin \: A) =  cos \: A }

\large \text\blue{Explanation}

 \large \text{L.H S =(Sec A + tan A) (1-sinA) }

\sf \large = > { (\frac{1}{cos \: A}  +  \frac{ sin  \:A}{cos \:A }) \: (1-sin \: A)} \: >> [(sec \: A =  \frac{1}{cos \: A} )tan \: A =  \frac{sin \:A }{cos \: A} ]

 \sf{ =  > ( \frac{(1 + sin \:A)(1 - sin \: A) }{cos \: A})(1 - sin \: A) } \\

 \sf{ =  =  >  \frac{1+(sinA)(1−sinA)}{cos \:A }  = } \\

 \sf{  =  =  > \frac{(1 -  {sin}^{2}A)}{cos \: A}} \\

 \sf{[Formula \:  used =(a+b)(a-b)= (a²+b²)]}

 \sf{=> \frac{ {cos}^{2}\:A}{cos \:A}}= cos \:A \\

\bf\huge \gray{Therefore}

 \bf{∴(sec \: A+tan \: A)(1−sin \: A)=cos \: A}

Similar questions