Math, asked by babitabhadoria1820, 10 months ago

sec A + tan A -1 / tan A - secA = 1+ sin A / cosA​

Answers

Answered by amitkumar44481
4

Correct QuestioN :

\tt : \implies \dfrac{Sec A + tan A - 1 }{ tan A - Sec A + 1 } =\dfrac{1 + Sin A}{Cos A}

SolutioN :

Taking LHS,

\tt : \implies \dfrac{Sec A + tan A - 1 }{ tan A - Sec A + 1 }

We know,

 \tt \: 1 + tan^{2} A = sec^2 A. \\ \tt  \: 1  = sec^2 A - {tan}^{2} A.

Substitute as place of - 1, We get.

\tt : \implies \dfrac{Sec A + tan A - \Big({Sec }^{2} A  - { tan }^{2} A \Big)}{ tan A - Sec A + 1 }

We know,

  • a² - b² = ( a + b )( a - b )

\tt: \implies \dfrac{Sec A + tan A - \Big(Sec  A   +  tan A \Big)\Big(Sec  A  -  tan A\Big)}{ tan A - Sec A + 1 }

Taking Common ( Sec A + tan A. )

\tt: \implies \dfrac{Sec A + tan A \Big[1- \Big(Sec  A  -  tan A\Big)\Big]}{ tan A - Sec A + 1 }

\tt: \implies \dfrac{Sec A + tan A \cancel{\Big(1- Sec  A   +   tan A\Big)}}{\cancel{ tan A - Sec A + 1} }

\tt: \implies Sec A + tan A

 \tt : \implies  \dfrac{1}{Cos A}  +  \dfrac{Sin A}{Cos A}

 \tt  : \implies  \dfrac{1 + Sin A}{Cos A}

Hence Proved.

Similar questions