(sec a-tan a )^2(1+sin a )=1 -sina
Prove that lhs = rhs
Answers
LHS
(sec a - tan a)² ( 1+sin a)
= (sec²a + tan²a -2sec a tan a) (1+sin a)
= (1+tan²a+tan²a -2sec a tan a)(1+sin a)
= (1+2tan²a -2sec a tan a)(1+sin a)
tan a = sin a/cos a
= (cos²a + 2sin²a -2sin a)(1+sin a)/cos²a
= (1-sin²a+2sin² a -2sin a)(1+sina)/(1-sin²a)
= (1+sin²a-2sina)(1+sina) / (1-sin a)(1+sin a)
= (1-sin a)² (1+sin a)/(1-sin a)(1+sin a)
= 1-sin a
= RHS
LHS
LHS= (sec A - tan A)²; express all as sine and cosine
LHS= (sec A - tan A)²; express all as sine and cosine= (1/cos A - sin A/cos A)²
LHS= (sec A - tan A)²; express all as sine and cosine= (1/cos A - sin A/cos A)²= [(1 - sin A)/cos A)]²
LHS= (sec A - tan A)²; express all as sine and cosine= (1/cos A - sin A/cos A)²= [(1 - sin A)/cos A)]²= (1 - sin A)²/cos² A
LHS= (sec A - tan A)²; express all as sine and cosine= (1/cos A - sin A/cos A)²= [(1 - sin A)/cos A)]²= (1 - sin A)²/cos² A= (1 - sin A)²/(1 - sin² A)
LHS= (sec A - tan A)²; express all as sine and cosine= (1/cos A - sin A/cos A)²= [(1 - sin A)/cos A)]²= (1 - sin A)²/cos² A= (1 - sin A)²/(1 - sin² A)= (1 - sin A)²/[(1 - sin A)(1 + sin A)
LHS= (sec A - tan A)²; express all as sine and cosine= (1/cos A - sin A/cos A)²= [(1 - sin A)/cos A)]²= (1 - sin A)²/cos² A= (1 - sin A)²/(1 - sin² A)= (1 - sin A)²/[(1 - sin A)(1 + sin A)= (1 - sin A)/(1 + sin A)
LHS= (sec A - tan A)²; express all as sine and cosine= (1/cos A - sin A/cos A)²= [(1 - sin A)/cos A)]²= (1 - sin A)²/cos² A= (1 - sin A)²/(1 - sin² A)= (1 - sin A)²/[(1 - sin A)(1 + sin A)= (1 - sin A)/(1 + sin A)= RHS
OR
RHS
RHS= (1-sinA)/(1+sinA)
RHS= (1-sinA)/(1+sinA)= (1-sinA)/(1+sinA) × (1-sinA)/(1-sinA) By Rationalization
RHS= (1-sinA)/(1+sinA)= (1-sinA)/(1+sinA) × (1-sinA)/(1-sinA) By Rationalization= (1-sinA)²/(1+sinA)(1-sinA)
RHS= (1-sinA)/(1+sinA)= (1-sinA)/(1+sinA) × (1-sinA)/(1-sinA) By Rationalization= (1-sinA)²/(1+sinA)(1-sinA)= (1-sinA)/(1+sinA) = LHS