Math, asked by monmonguite, 1 year ago

Sec A + Tan A = 2, find sec A

Answers

Answered by khanaffanullah
1

Given equation

sec

x

+

tan

x

=

2

...

...

.

.

[

1

]

Again we know

sec

2

x

tan

2

x

=

1

...

...

.

[

2

]

Dividing [2] by [1]

sec

x

tan

x

=

1

2

...

...

.

[

3

]

Adding [1] and [3] we get

2

sec

x

=

2

+

1

2

=

5

2

sec

x

=

5

4

cos

x

=

4

5

=

cos

α

,where  

α

=

cos

1

(

4

5

)

So  

x

=

2

n

π

±

α

where  

n

Z

Again subtracting [3] from [1] we get a solution in another form

2

tan

x

=

3

2

tan

x

=

3

4

=

tan

β

,where  

β

=

tan

1

(

3

4

)

So  

x

=

n

π

+

β

where  

n

Z

Alternatve

Given equation

sec

x

+

tan

x

=

2

1

cos

x

+

sin

x

cos

x

=

2

(

1

+

sin

x

)

2

(

1

+

sin

x

)

(

1

sin

x

)

=

2

[

1

+

sin

x

0

]

1

+

sin

x

1

sin

x

=

2

1

+

sin

x

1

sin

x

=

4

(

1

+

sin

x

)

=

4

(

1

sin

x

)

5

sin

x

=

3

sin

x

=

3

5

=

sin

sin

1

(

3

5

)

x

=

n

π

+

(

1

)

n

sin

1

(

3

5

)

Similar questions