Math, asked by girishtiwarirt, 1 year ago

sec A+ tan A = 2 then sec A is equal to

Answers

Answered by lalita2074
0

Hope it helps

Plz mark as brainliest

Attachments:

lalita2074: Sec a = undefined
lalita2074: See at last
girishtiwarirt: options given are (1)7/4 (2) 7/2 (3) 5/2 (4) 5/4 there is no undifined avaliable in ans
lalita2074: Ok
girishtiwarirt: pls explain me this
lalita2074: I will solve it again
girishtiwarirt: yah mam pls
girishtiwarirt: jldi bata do yrrr ans
girishtiwarirt: app bata rahe ho ans ki nahi mam
girishtiwarirt: I am getting late
Answered by Anonymous
0

\underline{\mathfrak{ Solution : }}



\textsf{ Using  trigonometric identity : }


<br />\boxed{\mathsf{ \implies tan \: A \: = \: \sqrt{ \: {sec}^{2}  \: A  \:  -  \: 1 \: \: }} }


\mathsf{\implies sec\: A \: + \: tan \: A \: = \: 2 } \\ \\<br /><br />\mathsf{\implies sec\: A \: + \: \sqrt{\: {sec}^{2} \: A \: - \: 1 \: \: } \: = \: 2 }

 \\ <br />\mathsf{ \implies \sqrt{\: {sec}^{2} \: A \: - \: 1 \: \:} \: = \: 2 \: - \: sec \:A } \\ \\<br />\mathsf{\implies {sec}^{2} \: A \: - \: 1 \: = \:{ ( 2 \: - \: sec \: A )}^{2}} \\  \\ <br />\textsf{ Using Algebraic identity : } \\ \\<br /><br />\boxed{\mathsf{ \implies {( a \: - \: b )}^{2} \: = \: {a}^{2} \: + \: {b}^{2} \: - \: 2ab }}<br /><br />

\mathsf{ \implies {sec}^{2} \: A \: - \: 1 \: = \: {(2)}^{2} \: + \: { ( sec \: A )}^{2} \: - \: 2 \: \cdot \:  \: 2 \: \cdot \: sec \: A}<br /> \:  \\  \\ <br />\mathsf{ \implies  \cancel{{sec}^{2} \: A} \: - \: 1 \: = \: 4 \: + \:  \:  \cancel{{sec }^{2}  \: A }\: - \: 4 \: sec \: A } \\  \\  \mathsf{ \implies  - 1 \:  -  \: 4 \:  =  \:  - 4 \: sec \:A \:  } \\  \\  \mathsf{ \implies  - 5 \:  =  \:  - 4 \: sec \:A \: } \\  \\  \mathsf{ \implies sec \: A \:  =  \:  \dfrac{  \cancel{- } \: 5}{ \cancel{ -} \:  4 \: } } \\  \\  \mathsf{ \therefore \:  \: sec \: A \:  =  \:  \frac{5}{4} }<br />

\boxed{\underline{\mathfrak{ Hope \: \: it \: \: helps \: !! }}}<br />

Similar questions