sec a+tan a=4/3 then sec a* tan a=?
Answers
Answered by
106
Given:
- secA + tanA = 4/3.
To Find:
- Value of secA × tanA.
Answer:
We are here given that , secA + tanA = 4/3.
Let secA + tanA = 4/3 .............(1)
Now we know relationship b/w tan and sec as ,
=> sec²∅ - tan²∅ = 1.
=> (sec∅ + tan∅ )(sec∅-tan∅) = 1.
=> (sec∅-tan∅) = 1/ sec∅+tan∅.
______________________________________
Now ,
=> secA + tanA = 4/3.
=> secA - tanA = 1÷4/3.
=> secA - tanA = 3/4. ............(2)
(1)+(2)
=> secA + tanA + secA - tanA = 3/4+4/3.
=> 2secA = 9+16/12.
=> 2secA = 25/12.
=> secA = 25/24.
______________________________________
Putting this is (1) ,
=> secA + tanA = 4/3.
=> 25/24 + tanA = 4/3.
=> tanA = 4/3-25/24.
=> tanA = 32-25/24.
=> tanA = 7/24.
Hence tanA × secA
= 25/24 × 7/24
= 175/576.
Similar questions