sec A- tan A=5. Then find cos A
Answers
Answered by
0
here is ur answer
sec A - tan A = 5, or
(1/cos A) - (sin A/cos A) = 5, or
1-sin A = 5 cos A, or
1-sin A = 5(1-sin^2 A)^0.5, or
Square both sides
(1-sin A)^2 = 25(1-sin^2 A)
1 - 2 sin A + sin^2 A = 25 - 25 sin^2 A, or
26sin^2 A - 2 sin A - 24 = 0, or
13 sin^2 A - sin A - 12 = 0.
sin A(1) = [+1+(1+625)^0.5]/26
= [+1+25]/26
= 26/26 = 1
Hence A(1) = 90 deg
and so sec A(1) = infinity.
sin A(2) = [+1-(1+625)^0.5]/26
= [+1-25]/26
= -24/26 = -12/13
Thus A(2) = arc sin (-12/13) = -67.38013505
cos A(2) = 0.384615384
sec A(2) = 1/0.384615384 = 2.6
Therefore, sec A = infinity or 2.6. Answer
hope it helps
༶•┈┈⛧┈♛Thanks♛┈⛧┈┈•༶
Similar questions