sec A / tan A+cot A= sin A
Answers
Answered by
11
LHS = sec A / tan A + cot A
= (1/cosA) / (sin A / cos A) + (cos A / sin A)
= (1/cos A)/sin^2 A + cos^2 A / sin A cos A
= 1/cos A / 1/sinAcosA
= sin A
= RHS
= (1/cosA) / (sin A / cos A) + (cos A / sin A)
= (1/cos A)/sin^2 A + cos^2 A / sin A cos A
= 1/cos A / 1/sinAcosA
= sin A
= RHS
smk3624gmailcom:
thanks bro
Answered by
1
Question :
Prove that sec A / tan A+cot A= sin A
Answer :
The given equation is proved.
Given :
The equation sec A / tan A+cot A= sin A
To find :
To prove that the equation is true
Solution :
L.H.S
sec A / tan A + cot A
R.H.S
sin A
Solving L.H.S :
sec A/(tan A+ cot A)
= (1/cos A)/[(sin A/cos A) + (cos A/sin A)]
= (1/cos A)/[(sin^2 A + cos^2 A)/sin A cos A]
= (1/cos A)/[1/sin A cos A]
= (1/cos A)*(cos A*sin A)
= sin A
= R.H.S
Therefore , sec A / tan A+cot A= sin A (Hence Proved)
#SPJ2
Similar questions