Math, asked by janviyadav1127, 9 months ago

sec A - tanA / sec A + tan A = 1-2sec A tan A + 2 tan^2 A

Answers

Answered by Rohit18Bhadauria
8

To Prove:

\frac{secA-tanA}{secA+tanA} =1-2secAtanA+2tan^{2} A

Solution:

We know that,

  • (a-b)(a-b)= (a-b)²
  • (a+b)(a-b)= a²-b²
  • sec²x - tan²x= 1 ⇒ 1+tan²x=sec²x
  • (a-b)²= a²+b²-2ab

\sf{L.H.S.=\dfrac{secA-tanA}{secA+tanA}}

[Rationalising]

       \implies\sf\dfrac{secA-tanA}{secA+tanA}\times  \sf\dfrac{secA-tanA}{secA-tanA}

        \implies\sf\dfrac{(secA -tanA)^{2}  }{sec^{2}A -tan^{2} A}

        \implies\sf\dfrac{sec^{2} A +tan^{2}A-2secAtanA  }{1}

        \implies\sf{1+tan^{2} A +tan^{2}A-2secAtanA}

        \implies\sf{1+2tan^{2} A -2secAtanA}

        \implies\sf{1 -2secAtanA+2tan^{2}A}

         \implies\sf{R.H.S.}

Hence Proved

Similar questions