Math, asked by anu143718, 1 month ago

sec alpha -tan alpha/sec alpha +tan alpha =1-2sec alpha tan alpha +2tan²alpha​

Answers

Answered by mathdude500
5

\large\underline{\bold{Given \:Question - }}

Prove that,

\rm :\longmapsto\:\dfrac{sec \alpha - tan\alpha }{sec\alpha + tan\alpha}  = 1 - 2sec\alpha \: tan\alpha \:  +  \:  {2tan}^{2}\alpha

\large\underline{\sf{Solution-}}

Consider LHS

\rm :\longmapsto\:\dfrac{sec\alpha  - tan\alpha }{sec\alpha  + tan\alpha }

On rationalizing the denominator, we get

\rm \:  =  \:  \: \dfrac{sec\alpha  - tan\alpha }{sec\alpha  + tan\alpha }  \times \dfrac{sec\alpha  - tan\alpha }{sec\alpha  - tan\alpha }

We know,

\green{\boxed{ \bf{ (x + y)(x - y) =  {x}^{2} -  {y}^{2}}}}

So, using this identity, we get

\rm \:  =  \:  \: \dfrac{ {(sec\alpha  - tan\alpha )}^{2} }{ {sec}^{2}\alpha  -  {tan}^{2}\alpha }

We know,

\green{\boxed{ \bf{  {sec}^{2}x -  {tan}^{2}x = 1}}}

and

\boxed{ \rm{  {(x - y)}^{2} =  {x}^{2} +  {y}^{2} - 2xy}}

Using these Identities, we get

\rm \:  =  \:  \: \dfrac{ {sec}^{2}\alpha  +  {tan}^{2} \alpha  - 2sec\alpha tan\alpha }{1}

\rm \:  =  \:  \:  {sec}^{2}\alpha  +  {tan}^{2}\alpha  - 2sec\alpha tan\alpha

\rm \:  =  \:  \:  1 + {tan}^{2}\alpha  +  {tan}^{2}\alpha  - 2sec\alpha tan\alpha

\rm \:  =  \:  \:  1 + 2{tan}^{2}\alpha  - 2sec\alpha tan\alpha

\rm \:  =  \:  \: 1 - 2sec\alpha tan\alpha  + 2 {tan}^{2} \alpha

Hence,

\boxed{ \rm{ \:\dfrac{sec \alpha - tan\alpha }{sec\alpha + tan\alpha}  = 1 - 2sec\alpha \: tan\alpha \:  +  \:  {2tan}^{2}\alpha}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions