Math, asked by MrUnknown9851, 3 months ago

( sec θ - cos θ ) ( cot θ + tan θ ) = tan θ sec θ​

Answers

Answered by Anonymous
1

Answer:

\huge\mathcal\pink{ANSWER}

sinθ(1+tanθ)+cosθ(1+cotθ)

=sinθ+ cosθsin 2 θ +cosθ+ sinθcos 2 θ

=sinθ+ sinθcos 2 θ + cosθsin 2 θ +cosθ

A= sinθsin 2 θ+cos 2 θ + cosθsin 2 θ+cos 2 θ

As,sin 2 θ+cos 2 θ=1

A= sinθ1 + cosθ1

= cosecθ+secθ

Answered by anindyaadhikari13
10

Required Answer:-

Given to prove:

  • ( sec θ - cos θ ) ( cot θ + tan θ ) = tan θ sec θ

Proof:

Taking LHS,

 \rm ( \sec\theta  -  \cos \theta)( \cot \theta +  \tan \theta)

 \rm =   \bigg( \dfrac{1}{ \cos \theta}   -  \cos \theta \bigg) \bigg( \dfrac{ \cos \theta }{ \sin \theta } + \dfrac{ \sin \theta}{ \cos \theta}  \bigg)

 \rm =   \bigg( \dfrac{1 -  \cos ^{2} \theta }{ \cos \theta}  \bigg) \bigg( \dfrac{ \cos^{2}  \theta  +  { \sin }^{2}  \theta}{ \sin \theta  \cos \theta }  \bigg)

 \rm =    \dfrac{ \sin^{2} \theta }{ \cos \theta} \times  \dfrac{1}{ \sin \theta  \cos \theta }

 \rm =    \dfrac{ \sin \theta }{ \cos \theta} \times  \dfrac{1}{ \cos \theta }

 \rm =    \tan \theta\times  \dfrac{1}{ \cos \theta }

 \rm =    \tan \theta \sec \theta

= RHS (Hence Proved)

Formula Used:

  • sin(x)/cos(x) = tan(x)
  • cos(x)/sin(x) = cot(x)
  • sin²(x) + cos²(x) = 1
  • cos(x) = 1/sec(x)
  • sec(x) = 1/cos(x)
Similar questions