( sec θ - cos θ ) ( cot θ + tan θ ) = tan θ sec θ
Answers
Answered by
1
Answer:
sinθ(1+tanθ)+cosθ(1+cotθ)
=sinθ+ cosθsin 2 θ +cosθ+ sinθcos 2 θ
=sinθ+ sinθcos 2 θ + cosθsin 2 θ +cosθ
A= sinθsin 2 θ+cos 2 θ + cosθsin 2 θ+cos 2 θ
As,sin 2 θ+cos 2 θ=1
A= sinθ1 + cosθ1
= cosecθ+secθ
Answered by
10
Required Answer:-
Given to prove:
- ( sec θ - cos θ ) ( cot θ + tan θ ) = tan θ sec θ
Proof:
Taking LHS,
= RHS (Hence Proved)
Formula Used:
- sin(x)/cos(x) = tan(x)
- cos(x)/sin(x) = cot(x)
- sin²(x) + cos²(x) = 1
- cos(x) = 1/sec(x)
- sec(x) = 1/cos(x)
Similar questions